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Abstract: Tunneling rate constants as a function of temperature are calculated for (a) three medium-size
molecules undergoing inversion: oxiranyl, dioxolanyl, and aziridine, together with their monodeutero
isotopomers, and (b) two larger species undergoing tautomerization: excited 7-azaindole and its 1:1 complex
with water. The former calculations allow a comparison of two direct-dynamics methods for multidimensional
tunneling: transition-state theory with semiclassical tunneling corrections (TST/ST) and the instanton approach.
The latter calculations illustrate the possibility of applying the instanton approach to biological model systems.
The potential-energy surfaces for the inversions are evaluated on the basis of density functional theory at the
level (U)B3LYP/6-31G*, which for the present problem is shown to yield results similar to UQCISD/6-
311+G**. All vibrational degrees of freedom are included in the calculations and, except for minor adjustments
of barrier heights, all parameters are used as calculated. The TST/ST calculations are performed with the
GAUSSRATE 7.2 program in the small-curvature approximation and the instanton calculations with the DOIT
1.1 program. For the same input parameters the two methods produce very similar results, which are in excellent
agreement with the observed rate constants (except for the well-known artifact that leads GAUSSRATE to
converge to the wrong low-temperature limit). These results clearly show that, even in the case of inversions
characterized by low tunneling frequencies and barriers, tunneling dominates the dynamics well beyond room
temperature, implying that for all reactions in which a proton is exchanged between two heavier atoms, tunneling
transfer will tend to remain dominant at even higher temperatures. While both methods support this conclusion
and are capable of yielding reliable tunneling rate constants, they differ greatly in efficiency, the instanton
method being considerably faster and therefore able to deal with much larger systems. This is demonstrated
on 7-azaindole, which, together with its 1:1 complex with water, has been used as a biological model system.
Comparison of the calculated rate constants of tautomerization by proton transfer in the excited state with the
available data sheds new light on the proposed transfer mechanism in protic solutions. The instanton calculations
are based on the same method and program as those for the inversions, except for a lower level of quantum
chemistry.

1. Introduction

Transfer of a hydrogen atom or a proton is a basic step in
numerous chemical reactions. It is also implicated in many
biological processes, where proton transfer is an alternative to
electron transfer, operative on different time and distance scales.
For instance, several enzymatic reactions show strong kinetic
isotope effects,1 indicating that hydrogen transfer is one of the
rate determining steps. Another example is double proton
transfer among DNA bases, which has been discussed as a
mechanism for DNA mutation.2 Also, the role of water in the
transfer of amino acids to their zwitterionic form has been the
subject of many studies.3-5 To unravel these complex processes,
it is of great help to be able to calculate the rate of proton

transfer, since rate constants are observables and allow direct
comparison with experiment. However, this has proved to be a
nontrivial problem for these systems, since the transfer tends
to be dominated by quantum-mechanical tunneling, a mechanism
that allows protons to transfer efficiently at modest temperatures,
even in the presence of relatively high energy barriers. The
observed “activation energy” is temperature-dependent, gener-
ally much smaller than the barrier height, and actually goes to
zero in the low-temperature limit. To deal quantitatively with
the dynamics of reactions involving hydrogen transfer, one
clearly has to come to terms with this nonclassical behavior.

This requirement has been a serious impediment to the
quantitative prediction of proton transfer rate constants in
systems too large to allow a full quantum-mechanical treatment.
Most treatments of hydrogen transfer in large systems are limited
to an evaluation of the properties of the energy barrier and do
not address the actual tunneling dynamics, so that a direct
comparison of theory and experiment is not possible. Of course
it is well-known how to calculate the rate of tunneling through
a one-dimensional barrier;6 this method is, in fact, widely used
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to examine organic reaction mechanisms.7 However, proton
tunneling can rarely be satisfactorily described as a one-
dimensional process: Evidently the motion of the atoms between
which the proton is being exchanged will have a major effect
on the tunneling rate.8-14 This recognition has led to the
introduction of two-dimensional approaches in which the second
dimension represents the effective motion of the other atoms
during the proton transfer.8,10,12,13,15,16Although two-dimensional
models have produced a great deal of qualitative insight into
such phenomena as the kinetic isotope effect and the temperature
dependence of the transfer process, they still require the
introduction of empirical parameters and thus cannot give rise
to quantitative predictions. For quantitative work it is necessary
to considerall degrees of freedom of the system.

Obviously, this will be a daunting task for actual biological
systems; one may reasonably expect, however, that much can
be learned from the study of models that mimic their basic
properties. The present paper is part of a project to develop a
dynamics method that can deal quantitatively with proton
transfer rates in such models. Following the introduction of a
method based on instanton theory, it aims to probe the accuracy
of this method by comparing its results not only with experi-
mental data, where agreement might be fortuitous, but also with
another, well-established theoretical method in a domain where
this method has proved to be effective. Armed with these results,
we then demonstrate that our method remains manageable well
outside this small-systems domain and can probe the proposed
hydrogen-transfer mechanism in a molecule of biological
interest.

The standard approach to chemical reaction rates is transition-
state theory,17 which is basically a statistical approach in which
the rate constant is fully determined by the Gibbs free-energy
difference between the transition state, identified as the top of
the potential-energy barrier, and the equilibrium configuration.
This theory allows one to go beyond low-dimensional models
and to adopt a multidimensional approach in which all degrees
of freedom of the system enter, namely through the partition
functions of the equilibrium configuration and the transition
state. The original formulation of transition state theory by
Wigner18 is purely classical and involves the assumption that
there is no recrossing of the barrier after the first passage. In
variational transition-state theory (VTST), this assumption is
mitigated by moving the dividing plane of the transition state
to a position along the reaction coordinate where recrossing is
minimized.19 In the quantum version of TST, the nonseparability

of the reaction coordinate from the transverse coordinates is
addressed by allowing for coupling between them (e.g., see ref
20). Quantum-mechanical tunneling is included by the addition
of semiclassical tunneling corrections, which leads to a version
called TST/ST (or VTST/ST);19 for applications to actual
systems, so-called direct-dynamics programs have been made
available21 that allow one to derive the dynamics directly from
the output of standard quantum-chemical codes. These programs
come in two forms, called the small-curvature tunneling (SCT)
and large-curvature tunneling (LCT) approximation, respec-
tively, between which a choice must be made on a priori or a
posteriori grounds. The SCT approximation22,23 is based on a
tunneling trajectory derived from the minimum-energy path
(MEP) through the inclusion of (weak) couplings of the
tunneling mode to the transverse modes, which are treated
adiabatically; such couplings reduce the effective mass of the
tunneling particle and thus enhance the tunneling rate. The
alternative LCT approximation24 is indicated if there is strong
coupling to the transverse modes and is based on an assumed
straight-line tunneling trajectory connecting the regions of the
two minima; since it is very demanding in computer time, few
applications to large systems have been reported to date. Note
that among all possible trajectories the MEP is the longest but
has the lowest barrier, whereas the straight-line path represents
the shortest trajectory with the highest barrier. In general neither
of these trajectories is optimal. The best compromise at any
given temperature is the trajectory that minimizes the classical
action. Although direct search methods have been developed
to find this trajectory,25 they are even more demanding com-
putationally than the LCT approximation and therefore limited
to very small systems.

However, it has been found that the notion of an optimal
tunneling trajectory governed by the minimum-action principle
is a powerful concept in the theory of tunneling dynamics.26

The corresponding theoretical framework is known as “instan-
ton” theory (e.g., see refs 12 and 13 and references therein);
formally the instanton path is defined as the trajectory that
minimizes the classical action in the upside-down potential. We
have recently shown27-35 that this concept remains fruitful even
for systems for which an accurate evaluation of the instanton
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path is impractical. Starting from the instanton approach
introduced by Miller26 and further developed by Benderskii and
co-workers,12,13 we have turned this approach into a powerful
multidimensional alternative to TST/ST. Rather than attempt
to calculate the instanton path directly, we have developed an
approximation scheme that focuses on the corresponding
instanton action, from which one can determine the rate constant
as a function of temperature, its zero-temperature limit being
related to the tunneling splitting of the ground-state energy level.
In our approach the instanton action is numerically evaluated
for the one-dimensional potential and then analytically corrected
for coupling to transverse modes so as to yield simple
expressions for tunneling rates and tunneling splittings. The
direct-dynamics program DOIT (dynamics of instanton tunnel-
ing)36 evaluates these expressions directly from calculated
energies, structures, and vibrational force fields of the stationary
configurations of the potential, which are the output of com-
monly used quantum-chemical software packages such as
GAUSSIAN.37

In its strict but, for large systems, unmanageable form,
instanton theory is basically “exact” up to the crossover
temperatureω*/2π, whereω* denotes the imaginary frequency
at the transition state. In the form used here36 it involves a
number of more or less severe approximations, made with the
dual purpose of allowing a direct link with quantum-chemical
programs and extending the usefulness of the method beyond
the crossover temperature. As our reaction coordinate we choose
not the MEP but the normal mode with imaginary frequency in
the transition state; the transverse modes are the other normal
modes of the transition state. The coupling of these modes to
the reaction coordinate is assumed to be linear and derived from
their displacement between the stationary points; this does not
require the adiabatic approximation. Coupling between the
transverse modes is neglected. In this lowest-order form of our
method, the only quantum-chemical input data required are the
structures, energies, and force fields of the stationary states,
whereas the TST/ST method requires a large number of such
calculations along the MEP and, in the LCT approximation,
energy calculations along the straight path as well. As a result
the computer time required for the evaluation of a set of rate
constants by the instanton method is only a fraction of the time
required by the TST/ST method. Since our method is very
different from TST/ST, it is of interest to compare the two
methods and to assess their areas of applicability. For the
comparison we use versions of the two methods that are
available in the form of readily accessible computer codes. In
two earlier papers we have carried out such a comparison for
tunneling splittings in glycolate anion31 and 9-hydroxyphenale-
none,33 and found that the instanton method was not only much
faster, as expected, but also more accurate. The instanton method
accounted more accurately for the observed isotope effects and,
in addition, it was able to account for splittings of vibrationally
excited levels of low-frequency skeletal modes while TST/ST
was not. In the present paper we compare the accuracy and
efficiency of the two methods for the calculation of tunneling

rate constants. To this end we have chosen three medium-size
molecules that undergo inversion. This test is less stringent than
a test involving actual transfer of a hydrogen atom; however,
molecules for which good hydrogen-transfer rate constants have
been reported are for the moment too large for accurate
calculations based on the TST/ST method.38 The present
molecules have the advantage that they are simple enough to
allow an accurate evaluation of the potentials and force fields,
so that a tripartite comparison is possible involving both
dynamics methods and the available sets of experimental data.
To compare the methods, we use the same level of quantum
chemistry for both; where the agreement with experiment can
be improved by minor adjustment of the calculated barrier
height, the most critical parameter in the calculations, we again
use the same correction for both methods.

The ultimate aim of this comparison is to establish the
suitability of our method for the evaluation of hydrogen-transfer
rate constants in model systems of biological interest. Such
applications require not only calculation of rate constants but
also a demonstration that the model used is relevant. The latter
aspect will be left for a future publication; here we limit
ourselves to an example that has received much attention as a
model for DNA bases, namely 7-azaindole (e.g., see the recent
review of Smirnov et al.39), which can be optically excited to a
metastable tautomer. For this excited state we calculate the rate
of double proton transfer in its 1:1 complex with water as a
function of temperature and isotopic substitution to demonstrate
that the method can indeed deal with systems of biological
interest. Three of the molecules to be considered have earlier
served as examples in the first paper of our series on the
instanton approach to hydrogen tunneling.27 Since these results
were reported, this approach has been applied to other systems
and has undergone considerable development.28-38 Also, the
earlier calculations were based incorrectly on the normal coor-
dinates of the equilibrium configuration rather than on those of
the transition state. In addition, facilities have become available
that allow us to upgrade the level of the quantum-chemical
calculations. This has made it possible to repeat our earlier
calculations at a much improved level and compare the results
with new TST/ST calculations performed at the same level.

The two direct-dynamics methods have been reviewed
recently17,35 and will therefore be treated here in a simplified
form. The TST/ST calculations are performed with the GAUSS-
RATE 7.2 program21 and the instanton calculations with the
DOIT 1.1 program.36 For the required quantum-chemical input
data, the GAUSSIAN 94 suite of programs37 was used.

2. Outline of the Dynamics Procedures

We first give a short outline of the instanton approach
developed in earlier studies; for more details see refs 12, 13,
33-35. In the instanton method the tunneling rate constant is
calculated from

where Ω0 is the effective tunneling mode frequency in the
equilibrium configuration, obtained by a unitary transformation
from the transition-state frequencies, andSI(T) is the instanton
action (in unitsp). Both of these quantities are derived from
the full-dimensional potential-energy surface calculated by ab
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initio methods. This potential is expressed in the normal
coordinates{x,y} of the transition state, wherex is the mode
with imaginary frequency, taken to be the reaction coordinate.
Displacements between the equilibrium configuration and the
transition state, taken as origin, are denoted by∆x and∆y. The
transverse modes{y} are assumed to be harmonic with
frequenciesωa,s, but no restriction is placed on the potential
along the reaction coordinatex. This leads to an adiabatic
potential of the form

where the subscripta(s) refers to vibrations that are antisym-
metric (symmetric) relative to the dividing plane of the transition
state and the factorsCa,s are linear couplings:

Since the inversion potentials are symmetric, these equations
assume a very simple form; however, generalization to asym-
metric potentials is straightforward.34,35

We transform calculated atomic displacementsr between the
transition state and the stable configuration into vibrational
displacements through the relation∆{x,y} ) r‚L , wherer is
the vector of the mass-weighted atomic displacements between
the stationary configurations andL is the 3N × (3N - 6) matrix
that relates{x,y} to the mass-weighted Cartesian coordinates
of the atoms in the transition state. With these definitions, the
instanton action assumes the form

In this expressionSI
0(T) is the one-dimensional instanton

action along the reaction coordinate

wherex1,2 are classical turning points for energyE*(T) where
the period of the motion in the upside-down potential-UA(x)
equals p/kBT. For numerical work it is more convenient,
however, to calculateSI

0(T) from its relation through eq 1 to
the standard semiclassical expression for the rate of one-
dimensional tunneling

whereZ0 is the one-dimensional partition function,P(E) is the
quasi-classical barrier penetration factor, and the integral runs
from the effective zero-point energy level in the initial state to
the top of the barrier. This extends the definition ofSI

0(T) to
regions beyond the crossover temperatureω*/2π. In these
expressions the effective mass of the tunneling particle is given
by

where the summations are restricted to modes with a high
frequency relative to the (imaginary) inversion frequency. The

lower-frequency transverse modes contribute via the correction
termsδa,s in eq 4, which are expressed in terms of the linear
couplingsCa,s of eq 3 as detailed in refs 33-35. Note that the
δa contribute effectively to the Franck-Condon factor of the
transition and thus lower the rate, whereas theδs facilitate the
transfer. The factorRs e 1 in eq 4 describes the modulation of
the antisymmetric correction by the symmetric coupling.13,34

The rate constant so defined comprises tunneling from levels
above the zero-point level. Its contribution, which is to be added
to the rate constant of eq 1, represents the zero-temperature limit
of the rate constant, given by eqs 1 and 4 in the limitT f 0,
whereSI

0(0) ) 2SC(pΩ0/2), i.e., twice the classical action for
the zero-point energy level. To evaluate the one-dimensional
adiabatic barrierUA(x), we use the barrier heightU0 and the
displacement∆x as (half) the barrier width, together with the
calculated curvatures at the stationary configurations. By
definition, the points at whichUA(x) is evaluated must obey
the conditions∂U(x,ya,s)/∂ya,s ) 0 for all modesya,s, so that the
gradient is directed alongx. It is evident that points along the
MEP do not obey these conditions, because our reaction
coordinate is the mode with imaginary frequency in the transition
state and, except in this point, does not coincide with the MEP.
Since the curvatures at the stationary points are evaluated, the
direction of this gradient is known near these points. Therefore,
a simple way to approximate the potentialUA(x) for intermediate
points is to connect the regions of the stationary points by their
common tangent, i.e., the tangent at the parabolas corresponding
to the frequencyω* of the transition state andΩ0 of the
equilibrium configuration. This procedure proved sufficient in
the present paper and in all cases studied so far. If a more
accurate potential is needed, it is necessary to find intermediate
configurations that obey the above conditions and to determine
their energy; this problem will be discussed elsewhere.

In transition-state theory tunneling corrections are introduced
through a transmission factorκ(T) > 1 that scales the classical
rate constant and is defined as the Boltzmann average of the
ratio of the quantum and the classical probabilities. The quantum
probability is evaluated semiclassically. If the tunneling path is
close to the MEP, we can use Miller’s reaction-path Hamilto-
nian22

wheres is the MEP, taken as the reaction coordinate,ps is its
conjugate momentum, andQ (P) denote the 3N - 7 transverse
vibrational coordinates (momenta), which depend parametrically
on s; V0(s) represents the potential alongs; the parametersBk,l-
(s) represent couplings between the transverse modes, which
are orthogonal to the reaction coordinate, each of which is
coupled throughBk,3N-6(s) to the reaction coordinate (mode 3N
- 6). In the small-curvature approximation, which was found
to be appropriate in the case at hand, all of the couplingsBk,l(s)
are neglected, and only the couplings between the 3N - 7
orthonormal modes ands are retained. The effect of these
couplings is to generate a centrifugal force, so that the actual
tunneling path does not pass through the transition state but
“cuts the corner” so as to become shorter and more energetic.

U(x,y) ) UA(x) + 1/2∑
s

ωs
2(ys - x2Cs/ωs

2)2 +

1/2∑
a

ωa
2(ya - xCa/ωa

2)2 (2)

Ca ) ωa
2∆ya/∆x, Cs ) ωs

2∆ys/∆x2 (3)

SI(T) )
SI

0(T)

1 + ∑
s

δs(T)

+ Rs∑
a

δa(T) (4)

SI
0(T) ) 2∫x1

x2{2meff[UA(x) - E*(T)]}1/2 dx (5)

k0 ) Z0
-1∫pΩ0/2

U0 P(E)e-E/kBT dE (6)

meff ) 1 + ∑
a

(Ca/ωa
2)2 + 4x2∑

s

(Cs/ωs
2)2 (7)

H(ps,s,P,Q) ) ∑
k)1

3N-7

[1/2Pk
2 + 1/2ωk(s)

2Qk
2] + V0(s) +

1

2

[ps - ∑
k,l)1

3N-7

QkPlBk,l(s)]
2

[1 + ∑
k)1

3N-7

QkBk,3N-6(s)]
2

(8)
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This introduces a factor smaller than unity in the denominator
of the kinetic energy and thus has the same effect as decreasing
the mass of the tunneling particle, namely to increase the
inversion rate. It is obvious that the most favorable tunneling
path will be a compromise between the shortest but most
energetic path (the straight line connecting the minima) and the
longest but least energetic path (the MEP); it is the path where
the action is minimal. It was shown that the small-curvature
path is the least-action path when the adiabatic approximation
is valid for the transverse modes, i.e., when the coupled modes
have a high frequency relative to the tunneling mode, as is the
case for the molecules under consideration.40 Only in that case
can Miller’s Hamiltonian be reduced to a quasi-one-dimensional
form. In the opposite case, when the tunneling mode has the
highest frequency, as in the case of transfer of a proton between
two heavier atoms, the large-curvature path is relevant, which
is very different from the MEP. Unfortunately, tunneling
calculations based on this path require the evaluation of energies,
gradients, and Hessians along the MEP, together with energy
calculations along straight paths where the adiabatic approxima-
tion is not valid. This makes the LCT method computationally
demanding for small molecules and impractical for large
molecules, unless low-level electronic structure calculations are
used.

3. Quantum-Chemical Calculations

Our earlier calculation of the tunneling potential and force
field of the three molecules subject to inversion was carried
out at the UHF/6-31G** level.27 Comparison with observed
tunneling rates indicated that at this level the inversion barrier
is substantially overestimated and requires empirical correction.
Following recent work at the UMP2 level by Barone et al.41 on
cyclopropyl and oxiranyl radicals, we investigated a number of
alternative schemes, using oxiranyl as an example. We extended
the basis set to 6-311+G** after establishing that the inclusion
of additional polarized orbitals yielded no further reduction of
the barrier height. To improve on the perturbational UMP2
method, we used the variational UQCISD method, which further
increased the barrier by 0.6 kcal/mol. Single-point calculations
with triple excitations of the form UQCISD(T) did not produce
a significant improvement. We also tried DFT and found that
UB3LYP/6-31G* leads to essentially the same results as
UQCISD/6-311+G**, not only for the barrier height but also
for the structure, at a fraction of the cost in computer time. A
summary of the results is listed in Table 1, where the structure
is represented by the pyramidalization angleθ calculated as the
projection of the CH bond on the plane of the atoms 1-3
depicted in Figure 1A, this angle being a measure of the

(40) Marcus, R. A.; Coltrin, M. E.J. Chem. Phys.1977, 67, 2609.
(41) Barone, V.; Adamo, C.; Brunel, Y.; Subra, R.J. Chem. Phys.1996,

105, 3168.

Figure 1. The equilibrium and transition-state configurations of (A) the oxiranyl radical, (B) the dioxolanyl radical, and (C) the aziridine molecule.
Bond lengths are in Å, bond angles in degrees; numbers with and without brackets refer to (U)B3LYP/6-31G* and UQCISD/6-311+G** levels of
calculation, respectively.
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tunnelingpath length. As expected, the barrier height increases
with the pyramidalization angle in the order dioxolanyl, oxiranyl,
aziridine. Since the transformation from the equilibrium con-
figuration to the transition state changes the orbital character
of the inversion center from sp3 to sp2, there is an increase in
π-bonding, which leads to the tightening of the ring structures
shown in Figure 1.

To provide a meaningful comparison of the two methods, it
is of course necessary to use the same level of quantum
chemistry for both. Since the TST/ST method is far more
demanding computationally than the instanton method, it
determines the highest level of theory that is practical. In the
present case this has led to the choice of the UB3LYP/6-31G*
level for all three systems, following a detailed comparison of
this level with the UQCISD/6-311+G** level for oxiranyl.

Our calculations on 7-azaindole and its 1:1 complex with
water focus on the first excited singlet state, since this is the
only state for which some kinetic data are available. The transfer
barrier for the isolated molecule is calculated to be 67.2 kcal/
mol at CIS/6-31G** level. As earlier deduced by Gordon,42 the
imaginary frequency in the transition state of the complex
corresponds to synchronous double proton transfer; the CIS/6-
31G** calculations result in an adiabatic barrier of 25.2 kcal/
mol. Since our earlier experiences indicate that this basis set
tends to yield weak hydrogen bonds, we have repeated the
calculation with the simple 3-21G basis set, which has been
claimed43 to give better hydrogen-bond parameters. The result
is a barrier height of 11.1 kcal/mol as well as significantly
shorter hydrogen bonds. Very recently, Chaban and Gordon44

reported an adiabatic barrier height of 18.2 kcal/mol obtained
at the MCSCF(10,9)/DZP level, which was reduced to 9.8 kcal/
mol by single-point MCSCF-PT2 calculations. As our CIS
calculations confirm, such a drastic reduction of the barrier is
expected to be accompanied by a significant change in geometry,
an issue not addressed by single-point calculations. These results
thus suggest that the level of calculation achieved thus far is
not yet sufficient to produce a reliable potential-energy surface
for the complex. This means that dynamics calculations will
produce relative rather than absolute rate constants.

4. Oxiranyl

The inversion rate constants of oxiranyl and its monodeutero
isotopomer have been measured by modeling the temperature

dependence of their magnetic resonance spectrum.45 At the low
end of the temperature range 100-225 K, the spectrum of the
undeuterated radical becomes temperature independent, the
inversion being slow on the time scale of the experiment, while
at the high end the spectra of both isotopomers tend toward a
planar, averaged structure. The calculated barrier heights
obtained at various levels of theory are listed in Table 1, as
discussed in the preceding section. The normal-mode frequencies
and displacements calculated at the UB3LYP/6-31G* and
UQCISD/6-311+G** levels are compared in Table 2. The
results are very similar, and the small differences have no
significant effect on the proposed comparison of the two
dynamics methods.

For the TST/ST calculations, the MEP was computed
according to the Page-McIver procedure47 with a step size of
0.01 bohr‚amu1/2; the Hessians calculated at 0.05 and 0.1
bohr‚amu1/2 intervals produced the same absolute rate constants,
indicating that the latter interval suffices. No scaling factors
were used. In both methods the only transverse mode that is
strongly coupled to the reaction coordinate is the CH-stretching
mode of the tunneling proton. In the TST/ST method this mode
shows a relatively large frequency change along the MEP as
well as a substantial projection on the mode with imaginary
frequency in the transition state. This implies that the tunneling
path is shorter than the MEP. Since the CH-stretching mode
has a much higher frequency than the inversion mode, its effect
on the tunneling can be incorporated by a reduction of the
effective mass of the tunneling particle. It turns out that the
effect of this coupling on the tunneling rate is small; in other
words, the tunneling trajectory stays close to the MEP, which
represents zero-curvature tunneling. The tunneling being ef-
fectively one-dimensional in this case, the LCT and SCT
approximations give basically the same tunneling rates.

In the instanton method the CH-stretching mode shows a large
displacement. As in the TST/ST case, this coupling effect can
be incorporated by a change in effective mass, which in this
approach is an increase rather than a decrease, however, namely
by a factor 1+ 0.94x2 (1 + 0.42x2 for the D-substituted radical);
the effect of this coupling on the rate is again small. Contrary

(42) Gordon, M. S.J. Phys. Chem.1996, 100, 3974.
(43) Rios, M. A.; Rodriguez, J.J. Comput. Chem.1992, 13, 860.

Rodriguez, J.J. Comput. Chem.1994, 15, 183.
(44) Chaban, G. M.; Gordon, M. S.J. Phys. Chem. A1999, 103, 185.

(45) Deycart, S.; Lusztyk, J.; Ingold, K. U.; Zerbetto, F.; Zgierski, M.
Z.; Siebrand, W.J. Am. Chem. Soc.1988, 110, 6721.

(46) Bak, B.; Skaarup, S.J. Mol. Struct.1971, 67, 2609.
(47) Page, M., Jr.; McIver, J. W.J. Chem. Phys.1987, 88, 922.

Table 1. Comparison of Tunneling Parameters for the Inversion of
the Oxiranyl Radical Produced by Different Methods; the DFT
Tunneling Parameters Are Listed also for the Dioxolanyl Radical
and Aziridine

method
barrier height,
Uad

0 , kcal/mol θ, deg

UHF/6-31G**a 9.0 56.5
UMP2/TZ2Pfb 8.3 46.0
UMP2/6-31G**c 7.6 45.2
UMP2/6-31+G** c 7.0 44.7
UMP2/6-311+G** c 6.6 44.5
UQCISD/6-311+G** c 7.2 44.9
UQCISD(T)//UQCISD/6-311+G** c 7.1 44.9
UB3LYP/6-31G*c 7.2 45.3
(dioxolanyl radical) UB3LYP/6-31G*c 5.9 43.2
(aziridine) B3LYP/6-31G*c 17.7 66.8 (63.3d)

a Reference 45.b Reference 41.c This study.d Experiment, ref 46.

Table 2. Absolute Values of the Displacements∆ (in Å amu1/2))
between the Stable and Transition-State Structures of Oxiranyl-d0/
-d1, Obtained at the UQCISD/6-311+G** and UB3LYP/6-31G*
Levels and Expressed in Terms of the Transition-State Symmetric
and Antisymmetric Modes

UQCISD/6-311+G** UB3LYP/6-31G*

ω, cm-1 ∆ ω, cm-1 ∆

Symmetric Modes
3386/2524 0.232/0.260 3375/2515 0.235/0.262
3124/3124 0.001/0.013 3091/3091 0.002/0.012
1556/1551 0.006/0.024 1558/1554 0.005/0.024
1383/1341 0.030/0.099 1389/1348 0.034/0.105
1224/1213 0.043/0.049 1216/1203 0.049/0.050
1108/1062 0.034/0.020 1089/1054 0.033/0.022
960/818 0.023/0.037 951/804 0.015/0.033
750/690 0.029/0.036 736/677 0.033/0.028

Antisymmetric Modes
3211/3211 0.000/0.001 3168/3168 0.000/0.001
1102/1102 0.025/0.029 1095/1094 0.030/0.030
981/975 0.079/0.105 958/952 0.076/0.103

Reaction Coordinate
885i/695i 0.693/0.901 864i/679i 0.699/0.909
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to our earlier results, no other couplings are significant, so that
the tunneling is effectively one-dimensional. The reason the
effective-mass effect has the opposite sign in the two methods
is that these methods start from different trajectories: the TST/
ST method starts from a trajectory that is too long, namely the
MEP, while the instanton method starts from a trajectory that
is too short, namely the straight path corresponding to the
inversion mode.

The quantum-chemical input data allow us to reproduce the
observed inversion rate constants, provided we adjust the
calculated barrier height by a factor 0.95 to 6.8 kcal/mol for
both methods. With this adjustment, the agreement with the
observed rate constants of both isotopomers is very satisfactory,
as shown in Figure 2, where the solid lines represent the
instanton results and the broken lines the TST/SCT results
calculated with the same parameters. The two results are very
similar, except near the low-temperature limit. GAUSSRATE
does not converge to the correct low-temperature limit, since it
computes the tunneling correction as a continuous Boltzmann
average over energies in the initial configuration instead of as
a discrete sum over energy levels. This approximation is not
difficult to correct,48 but this correction is not used here since
it is not implemented in the program. The calculations also allow
us to assess the relative contributions of classical and quantum
transitions to the transfer process. The classical contributions
follow the Arrhenius law and are represented by a dotted line
for the light (top) and D-substituted (bottom) isotopomers.
Comparison of the classical results with the total inversion rate
constants calculated by the instanton and TST/ST methods
shows that for undeuterated oxiranyl, tunneling transfer is
dominant, i.e., the total rate constant is more than double the
classical rate constant below 400 K; for the monodeuterio
compound tunneling dominates below 250 K. The crossover
temperatures of the instanton method for the two isotopomers
are 200 and 155 K, respectively; Figure 2 shows that the
instanton results remain consistent with the TST/SCT results
above these temperatures and extrapolate smoothly to the
classical limit. As explained in section 2, this is due to our
method of evaluating the one-dimensional instanton action,
which extends its definition to arbitrary temperatures.

5. Dioxolanyl

The dioxolanyl radical, also depicted in Figure 1, has a rate
of inversion that is too high to be measured by electron-spin
resonance, unless it is deuterated at the carbon atom carrying
the unpaired electron. The inversion rate constant of the
monodeutero isotopomer has been measured for temperatures
covering a range from 100 to 190 K, running from temperature-
independent to thermally activated inversion.49 Our earlier
attempt to calculate the observed rate constants led to the
conclusion that anharmonic coupling terms were necessary to
arrive at a satisfactory reproduction of the experimental data.
The improved calculations, based on UB3LYP/6-31G*-level
computations of the barrier height, structures, and force fields,
as well as on a refined instanton approach, show that this
conclusion was not justified. The recalculated normal-mode
frequencies and displacements are listed in Table 3; they confirm
the coupling to a symmetric ring-bending mode of 247 cm-1,
but this coupling is too weak to affect the rate constants
substantially, leading effectively to a two-dimensional tunneling
potential. In addition, there is coupling to the symmetric CH-
stretch mode (although weaker than in the case of oxiranyl),
which is included through mass-renormalization. The rate
constants for the calculated barrier height of 5.9 kcal/mol are
displayed in Figure 3, where the instanton results are shown as
solid lines and the TST/SCT results as broken lines. Excellent
agreement with experiment is obtained. Again the two methods
yield very similar results except for those near the low-
temperature limit, where the TST/SCT results are low, not only
for the D-substituted isotopomer but also for the parent
compound, since this method predicts values within the EPR
detection range, contrary to what is observed.49 As pointed out,
this can be corrected by replacing the integral over tunneling
energies by a summation over discrete levels. The classical
results represented by dotted lines clearly indicate that tunneling
dominates the inversion process in the temperature range studied
experimentally. The crossover temperatures for dioxolanyl and

(48) Lauderdale, J. G.; Truhlar, D. G.J. Am. Chem. Soc.1985, 107,
4590.

(49) Deycart, S.; Lusztyk, J.; Ingold, K. U.; Zerbetto, F.; Zgierski, M.
Z.; Siebrand, W.J. Am. Chem. Soc.1990, 112, 4284.

Figure 2. Comparison of observed and calculated absolute rate
constants for the inversion of oxiranyl. The data (circles for oxiranyl-
d0, squares for oxiranyl-d1) are taken from ref 45; the solid and dashed
lines represent calculated instanton and TST/SCT rate constants,
respectively. The dotted lines represent the classical contributions.

Table 3. Same as Table 2 for Dioxolanyl-d0/-d1, at UB3LYP/
6-31G* Level

ω, cm-1 ∆

Symmetric Modes
3369/2496 0.132/0.166
3136/3136 0.000/0.002
3030/3030 0.003/0.004
1540/1540 0.002/0.004
1391/1392 0.001/0.000
1264/1263 0.015/0.018
1195/1172 0.018/0.044
1158/1156 0.016/0.034
994/984 0.016/0.041
946/946 0.001/0.001
764/758 0.084/0.065
247/247 0.194/0.194

Antisymmetric Modes
3142/3142 0.000/0.000
3041/3041 0.002/0.001
1535/1535 0.001/0.001
1420/1404 0.005/0.004
1290/1249 0.008/0.008
1216/1194 0.001/0.003
1152/1059 0.003/0.000
1004/927 0.002/0.005
880/805 0.006/0.010
652/650 0.005/0.009
161/145 0.165/0.022
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its monodeutero isotopomer are 200 and 165 K, respectively.
It follows from Figure 3 that, as in the case of oxiranyl, the
instanton results for the heavier isotopomer remain in agreement
with experiment above the crossover temperature.

6. Aziridine

The inversion of the aziridine molecule has been studied by
nuclear magnetic resonance in the gas phase at relatively high
temperatures.50,51 Because these temperatures are well above
the crossover temperatures, which for aziridine-d0 and -d1 were
calculated to be about 210 and 165 K, respectively, this system
provides an experimental test for the instanton approach. The
two sets of experimental data that are available do not agree
very well, and only one of them covers the deuterium isotope
effect. The frequencies and displacements recalculated at the
level B3LYP/6-31G* and displayed in Table 4 confirm the
earlier conclusion that the only transverse mode that is strongly
coupled to the inversion mode is the NH-stretching mode.
Because of its high frequency, it can be treated in the adiabatic
approximation. As a result, the inversion potential is basically

one-dimensional, similar to that for oxiranyl. It turns out that
both theories produce essentially the same results, which in
Figure 4 are compared with the experimental data and with the
classical results. It is concluded that for aziridine, but not for
its N-deuterated isotopomer, tunneling remains the dominant
inversion mechanism within the range of temperatures inves-
tigated, namely 325-380 K, but that classical transfer is
beginning to contribute comparably near the upper part of this
range. It is also clear that the validity of the instanton results is
not limited to the region below the crossover temperature. The
calculated results displayed in Figure 4 are based on a barrier
adjusted for both methods by a factor 1.07 to a value of 19.0
kcal/mol; because of experimental uncertainties, it is difficult
to judge the quality of the fit. We note that this correction brings
the barrier in line with a very recent classical trajectory
calculation with one-dimensional WKB tunneling corrections;52

it used a barrier height of 19.2 kcal/mol, calculated at the level
MP2/6-311G(2df,2p) and resulted in a similar fit to the
experimental data.

7. Application to 7-Azaindole

Having established that the instanton method yields reliable
rate constants for inversion via hydrogen tunneling and accounts
satisfactorily for the temperature and isotope dependence of
porphine tautomerization,34 we now apply the method to the
molecule 7-azaindole, which has received much recent attention
as a biological model system (e.g., see refs 39 and 53 and
references therein). This molecule, depicted in Figure 5, exists
in two tautomeric forms, such that the form that is stable in the
ground state is metastable in the first excited state. Following
optical excitation its dimer undergoes rapid tautomerization;
because of this property it has been used as a model for DNA-
base mutation.2 The isolated monomer does not tautomerize
within the lifetime of the fluorescence (5.7 ns54), which is not
surprising since the transfer barrier is calculated to be of the
order of 60 kcal/mol. However, it tautomerizes rapidly in protic
solvents, including water, presumably due to the formation of
complexes such a 7-azaindole‚H2O, also depicted in Figure 5.
Quantum-chemical calculations42 indicate that the tautomeriza-
tion occurs by synchronous double proton transfer. The barrier

(50) Borchardt, D. B.; Bauer, S. H.J. Chem. Phys.1986, 85, 4980.
(51) Carter, R. E.; Drakenberg, T.; N. A. Bergman, N. A.J. Am. Chem.

Soc.1975, 97, 6990.

(52) Guo, Y.; Wilson, A. K.; Chabalowski, C. F.; Thompson, D. L.J.
Chem. Phys.1998, 109, 9258.

(53) Mente, S.; Maroncelli, M.J. Phys. Chem. A1998, 102, 3860.
(54) Huang, Y.; Arnold, S.; Sulkes, M.J. Phys. Chem. A1996, 100,

4734.

Figure 3. Same as Figure 2 but for the dioxolanyl radical. The
experimental data are taken from ref 49.

Table 4. Same as Table 3 for Aziridine-d0/-d1

ω, cm-1 ∆

Symmetric Modes
3753/2762 0.500/0.611
3044/3044 0.023/0.006
3033/3034 0.000/0.000
1591/1589 0.042/0.005
1544/1544 0.000/0.000
1355/1331 0.028/0.083
1164/1150 0.000/0.000
1138/1129 0.000/0.105
1129/1118 0.126/0.000
974/850 0.000/0.101
856/746 0.168/0.000

Antisymmetric Modes
3104/3104 0.001/0.004
3090/3090 0.000/0.000
1191/1180 0.081/0.108
1162/1162 0.000/0.000
1040/1040 0.000/0.000
864/858 0.080/0.129

Reaction Coordinate
911i/710i 0.884/1.185

Figure 4. Same as Figure 2 but for the aziridine molecule. The
experimental data are taken from ref 50 (open symbols) and from ref
51 (closed symbols).
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for this process is much lower than the barrier for tautomer-
ization in the isolated molecule, but there have been no attempts
to calculate transfer rate constants in these systems.

Cold-beam experiments show that the excited complex does
not tautomerize within its fluorescence lifetime either. Note that
this lifetime of 8.1 ns54 exceeds the fluorescence lifetime of
the isolated molecule, in qualitative agreement with calculations
at the CIS/6-31G** level. The lack of observable tautomerization
implies a transfer rate constant of the order of 107 s-1 or smaller.
To relate this result to the quantum-chemical calculations,
discussed in section 3, we need a method that allows us to
calculate the corresponding rate constants. This can be readily
accomplished by our program once a reliable potential-energy
surface is obtained, but this is clearly not yet the case. However,
our method allows us to reverse the problem and solve for the
barrier height required to account for a given rate constant,
starting from a calculated set of geometries and force fields.
To account for the absence of tautomerization within the
fluorescence lifetime, we find that the barrier must be at least
14 kcal/mol. Remarkably, this value is obtained for both the
3-21G and the 6-31G** structures and force fields, the former
requiring an upward, the latter a downward, correction of the
barrier. Obviously, it is very useful to have a method that can
establish whether a given potential is compatible with observed
rate constants.

To show that the method can also probe proposed reaction
mechanisms, we plot in Figure 6 the calculated rate constants
for double proton and double deuteron transfer in the excited
complex as a function of temperature. The results are based on
a barrier height adjusted to 14.0 kcal/mol in order not to
contradict the cold-beam observations. Since the correction to
the barrier height is smallest for the 3-21G basis set, we have
used these results in the calculations; results based on the
6-31G** basis set are quite similar, however. The calculated
kinetic isotope effect is typical for tunneling transfer. As further
evidence that the transfer proceeds by tunneling, we also plot

the calculated classical transfer rate constants. It is interesting
to consider the role of couplings to transverse modes. Their
effect, which is dominated by symmetric low-frequency solvent-
bridge modes, increases the calculated rate constants and reduces
the isotope effect as illustrated in Figure 6. The calculated
temperature dependence is weak, as expected for a tunneling
reaction driven by a thermal energy much smaller than the
barrier height, and cannot account for the fast tautomerization
observed in protic solvents. This is not surprising: it indicates
that the role of the solvent cannot be reduced to that of a simple
proton bridge. Thus, the calculations indicate that the actual
mechanism of 7-azaindole tautomerization in protic solvents
remains to be explained. The same applies, ipso facto, for the

Figure 5. Structures of excited 7-azaindole in the initial, transition, and final state, respectively, calculated at the CIS/3-21G level, together with
the corresponding structures of excited 7-azaindole‚H2O.

Figure 6. Tautomerization rate constants of 7-azaindole (bottom),
7-azaindole‚H2O (solid line, top), and N-deuterated 7-azaindole‚D2O
(solid line, middle) calculated at the CIS/3-21G level with the barrier
height adjusted to 14.0 kcal/mol. The broken lines indicate results
obtained with the coupling to the transverse modes neglected and the
dotted line represents classical results for the undeuterated complex.
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mechanism of tautomerization of guanine and of the DNA bases
in general,55 a problem that will be addressed elsewhere.

8. Discussion

The most striking result of the present investigation is the
high level of agreement, not only between the two methods
being compared but also between theory and experiment. The
only clear discrepancy is the underestimation of the tunneling
rate and the kinetic isotope effect in the low-temperature range
by the GAUSSRATE program. This is an artifact that can be
readily removed;48,56,57however, in the context of the present
work, we have used the available software in the form in which
it is presented. The agreement shows clearly that hydrogen
tunneling is not a low-temperature phenomenon that can be
ignored at room temperature, even for simple inversions
characterized by low tunneling frequencies and modest barriers.
In the more important case of proton transfer between two
heavier atoms, tunneling should remain the dominant transfer
mechanism for much higher temperatures. Unfortunately, we
have not been able to find systems of this kind that could be
tested by the methods used for the inversions. The few systems
for which adequate kinetic data are available are too large to
be treated by the TST/LCT appoximation indicated for such
transfer. The largest systems treated thus far by this method
are carboxylic acid dimers,58 for which, however, few experi-
mental data have been reported.

Although initially the instanton method was specially de-
signed to deal with processes in the tunneling region, i.e., below
the crossover temperature, in our formulation its validity is
extended to arbitrary temperatures, and the results converge to
the standard classical rate constant. Reduced to its bare essentials
our method amounts to the following simple procedure: (1)
calculate the rate constant for one-dimensional tunneling from
eq 6, with zero-point corrections applied to the barrier height
and with an effective mass that accounts for adiabatic coupling
to high-frequency modes, (2) extract the corresponding one-
dimensional instanton action by means of eq 1 and divide it by
a factor

calculated from the displacements of symmetric transverse
modes between the equilibrium configuration and the transition
state, (3) multiply the resulting rate constant by a vibrational
overlap integral derived from the corresponding displacements
of antisymmetric modes, and (4) add the zero-temperature rate
constant, which constitutes the contribution of the zero-point
level, and the standard classical rate constant. Such a scheme
is easy to apply even to very large systems, provided reasonably
accurate quantum-chemical parameters can be obtained for the
stationary points of the potential.

This opens the possibility of adding the calculation of rate
constants to the arsenal of methods available to deal with

biological processes. These processes take place in an aqueous
environment and involve molecules and polymers that abound
in hydrogen bridges. Many of them involve transfer of a proton
across such a bridge as an elementary step, although the detailed
reaction mechanism is often not known. The pathway of a com-
plex reaction is frequently determined by competition between
such elementary steps; for instance, deuterium substitution at a
critical site may alter the reaction path. The presence of water
molecules is an important factor in these processes since they
can participate directly in the transfer. It is therefore of great
importance to develop a clear understanding of the rates of
hydrogen tunneling reactions through a quantitative interpreta-
tion of experimental observations in quantum-mechanical terms.

The example of 7-azaindole illustrates several of these aspects.
It shows the catalytic effect of a water bridge on proton transfer
and it demonstrates the efficiency of coherent double proton
transfer in hydrogen-bonded chains. Since rate constants, as
opposed to barrier heights, are observables and allow direct
comparison with experimental data, it was possible to show that
this hydrogen bridge by itself is not sufficient to account for
the rapid tautomerization of 7-azaindole observed in protic
solvents. This followed from the absence of tautomerization in
a cold beam within the fluorescence lifetime, combined with
the weak temperature dependence deduced for the tunneling
reaction. Clearly, model studies involving more solvent mol-
ecules are needed before we can reach a basic understanding
of this process. Although in the present investigation the TST/
ST and instanton methods produce comparable results for
inversion reactions, in practical terms the corresponding pro-
grams are not equivalent since they differ greatly in the amount
of computer time required. Although efforts have been an-
nounced to improve the computational efficiency of the TST/
ST method,59 at the present time the instanton method is much
faster. Since the total time depends on the level of quantum-
chemistry used, it is difficult to make exact comparisons. For
the instanton method it is usually sufficient to calculate the
geometry, energy, and force field at three stationary points of
the surface. The amount of computer time required for the actual
dynamics calculations is negligible. For the TST/ST method it
is generally necessary to perform similar calculations at many
points along the MEP and, in the large-curvature approximation,
to perform additional energy calculations along the straight-
line path. If the number of points required is 3+ n, the instanton
method is roughly 1+ n/3 times faster than the TST/ST method;
in practice this means that the systems that can be handled are
larger by a factor of 10. This brings model systems of biological
interest within the range of proton-transfer rate constant calcula-
tions, as the example of the 7-azaindole complex with water
illustrates.
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